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Abstract

A theoretical model is developed for acoustic radiation from a plate into a porous medium. The medium
is modelled as an equivalent fluid with complex density and complex wavespeed. It is found that radiation
from a finite plate is dominated by area radiation at all frequencies, unlike the case for radiation into air
where it is only area dependent above the critical frequency. Although particle motion is similar to that for
radiation into air, the circulatory motion below the critical frequency still results in energy loss from the
plate due to dissipation within the medium.
As radiation is area dependent at all frequencies, a simpler model based on radiation from an infinite

plate is also developed. This gives the same answer as radiation from a finite plate to leading order. Plate
losses measured for radiation into a finite thickness layer of porous material show good agreement with
predicted results.
r 2003 Elsevier Ltd. All rights reserved.

1. Introduction

Double walls represent an important class of structure widely used in vehicle design and
building construction to provide good sound insulation with minimal mass. The air cavity created
between the leaves of a double wall plays an important role, isolating the two structural elements
from each other, hence reducing the vibration amplitude on the receiving side of the structure. An
absorbent material may be placed in the cavity to damp the cavity modes and hence increase
sound insulation.
The presence of absorbent materials in close proximity to (but not necessarily touching)

structural elements has been observed to result in increased damping of the structure. A
formulation of this problem for a finite plate radiating into a semi infinite half-space occupied by a
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porous material has been studied by Cummings et al. [1]. They studied the power radiated from a
single plate mode into the porous medium, modelled using an equivalent fluid representation.
Implicit in this approach therefore is that the vibrational field on the plate excites only the fluid
contained within the porous medium and not the skeleton of the medium itself. The skeleton is in
effect assumed to be rigid. The problem was tackled numerically as no analytical solution could be
found. The results showed that for low order modes there is increased radiation into the porous
material as compared with air, which may result in significant damping of the plate.
This paper describes an alternative analytic approach to solving the problem of radiation from

a finite plate into porous media. It uses techniques adopted by Leppington et al. [2], who used
asymptotic techniques to revisit the problem, previously treated by Maidanik [3], Wallace [4] and
others, of radiation from a plate into air. When applied to the air problem, this approach
provided additional insight to the radiation mechanisms.
In this paper the approach is used to examine radiation into a porous material that is

represented as an equivalent fluid. The resulting analytical solution allows radiation from the
plate to be predicted at high frequency where there are many modes and provides an insight into
the physics involved. It is found that, for realistic porous materials, radiation is proportional to
the plate area at all frequencies and that edge dependent effects are of secondary importance (in
contrast to radiation into air where edge effects are dominant below the critical frequency, fc).
Therefore radiation can be found from consideration of an infinite plate that does not include
edge effects. A simpler theory derived from consideration of an infinite plate is also presented and
it is shown that identical results are obtained. These form the key findings of this paper.
The theoretical results are compared with measurements made on plates radiating into fibrous

porous materials. There are no straightforward experiments to directly measure radiation into a
porous layer and so indirect methods must be used. Radiation into a porous layer was determined
from measurements of damping of a plate placed next to a porous layer. The measured results
agree well with predictions based on the proposed model.

2. Radiation from a finite plate

2.1. Definition of the problem

A thin elastic plate occupies the region 0oxoa; 0oyob; z ¼ 0 and is bounded by some porous
medium represented by an equivalent fluid (with complex wave number ka and complex density
ra) in the region�NoxoN; �NoyoN; 0ozoN: The rest of the plane z ¼ 0 contains a rigid
baffle. If the plate is simply supported and is excited by a sound field from the region
�NoxoN; �NoyoN; �Nozo0 it will undergo vibrations with transverse velocity

Uðx0; y0; tÞ ¼ U0 sin kxx0 sin kyy0eiot; ð1Þ

where U0 is the velocity amplitude. The plate wave numbers are given by kx ¼ mp=a and ky ¼
np=b where (m and n are integers) and o is the angular frequency. The co-ordinates ðx0; y0Þ denote
the position on the plate.
Following the method employed by Cummings et al. [1], the plate can be considered as an array

of acoustic monopoles with volume velocity amplitudes Q0: If a monopole is positioned at
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P0ðx0; y0; 0Þ then its effect on the pressure at a general point Pðx; y; zÞ in the porous medium is

p0ðr0; tÞ ¼
ioraQ0

2pr0
e�ikar0 ; ð2Þ

where r02 ¼ ðx � x0Þ2 þ ðy � y0Þ2 þ z2 is the square of the separation distance of P0 and P:
The volume velocity of a monopole is given by the product of velocity and area thus,

Q0 ¼ Uðx0; y0; tÞdx0dy0: ð3Þ

Substituting the velocity from Eq. (1) into Eq. (3) and then using this in expression (2) for the
pressure at Pðx; y; zÞ gives

p0ðr0; tÞ ¼
ioraU0

2pr0
eiot sin kxx0 sin kyy0e�ikar0dx0dy0: ð4Þ

The total pressure at Pðx; y; zÞ is given by the sum of the pressures from each point on the plate.
This can be done by integrating (4) over the plate area to give

pðx; y; z; tÞ ¼
ioraU0

2p
eiot

Z b

0

Z a

0

sin kxx0 sin kyy0
e�ikar0

r0
dx0 dy0: ð5Þ

The total power, W ; radiated from the plate is given by

W ¼
Z b

0

Z a

0

%Iðx; yÞ dx dy on z ¼ 0; ð6Þ

where

Iðx; y; tÞ ¼ Refpðx; y; 0; tgRefUðx; y; 0; tÞg; ð7Þ

is the acoustic intensity normal to the plate. The bar denotes that a time-averaged quantity is
required.
It should be noted that the power radiated cannot be determined from integration of the far

field intensity, as can be done for air [4], since the medium is non-conservative and so power is
dissipated within it.
This time-averaged intensity is given by

%Iðx; yÞ ¼
o
2p

Z 2p=o

0

Iðx; y; tÞ dt ¼
1

2
Refpðx; y; 0; tÞU�ðx; y; tÞg; ð8Þ

where the right-hand side of this is a consequence of the harmonic form of the time dependence.
The superscript � denotes a complex conjugate.
Expression (5) on z ¼ 0 now becomes

pðx; y; 0; tÞ ¼
ioraU0

2p
eiot

Z b

0

Z a

0

sin kxx0 sin kyy0
e�ikar

r
dx0 dy0; ð9Þ

where r2 ¼ ðx � x0Þ2 þ ðy � y0Þ2:
The velocity is also known from Eq. (1) giving

Uðx; y; tÞ ¼ U0 sin kxx sin kyyeiot: ð10Þ

The wave number ka is complex so it is useful to write it in the form ka ¼ kð1� ikÞ: The real part
of ka is a measure of the phase velocity ca of the wave and the imaginary part is related to the
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sound attenuation with distance. The complex density can also be expressed in this form i.e.,
ra ¼ rð1� itÞ: Note that this is the same as Cummings et al. [1] who expressed it as ra ¼ jr0jeif;
where jr0j ¼ rð1þ t2Þ1=2 and f ¼ tan�1ð�tÞ:
Substituting these complex forms for ka and ra in Eqs. (9) and (10) gives the intensity defined by

(8) as

%I ¼
orU2

0

4p

Z b

0

Z a

0

sin kxx sin kyy sin kxx0 sin kyy0
sin kr

r
e�kkr dx0 dy0

�

þt
Z b

0

Z a

0

sin kxx sin kyy sin kxx0 sin kyy0 cos kr

r
e�kkr dx0 dy0

�
ð11Þ

and the power is then found by integrating this over the plate area as in Eq. (6). The term e�kkr

accounts for the aforementioned dissipation in the medium.
It is useful to normalize this power with the power associated with a piston radiating into air.

This gives a radiation efficiency, s; thus

s ¼
W

r0c0ab/U2S
; ð12Þ

where /U2S is the mean square velocity averaged with respect to time and space (which in this
case is equal to 1

8
U2
0 ), r0 is the mean density of air and c0 is the wavespeed in air. Therefore, the

expression for the radiation efficiency of the plate is

s ¼
2or

r0c0abp

Z b

0

Z a

0

Z b

0

Z a

0

sin kxx sin kyy sin kxx0 sin kyy0 sin kr

r
e�kkr dx dy dx0 dy0

�

þt
Z b

0

Z a

0

Z b

0

Z a

0

sin kxx sin kyy sin kxx0 sin kyy0
cos kr

r
e�kkr dx dy dx0 dy0

�
: ð13Þ

2.2. Comparison with sound radiation into air

A similar problem for sound radiation into a real fluid (air) was considered by Leppington et al.
[2]. The equivalent expression for the radiation efficiency in this case is

s0 ¼
2k0

pab

Z b

0

Z a

0

Z b

0

Z a

0

sin kxx sin kyy sin kxx0 sin kyy0
sin k0r

r
dx dy dx0 dy0; ð14Þ

where k0 ¼ o=c0 is the acoustic wavenumber of air. Here the omission of the exponentially
decreasing term implies that the air is a conservative medium (assuming that no consideration is
given to damping in the air i.e., k0 is real). The method employed by Leppington et al. [2] to
reduce the integral in Eq. (14) to an integral in a single variable is outlined below.
By letting J0 be the integral in Eq. (14), s0 becomes

s0 ¼
2k0

pab
J0: ð15Þ

If the transformations x0 ¼ x þ u and y0 ¼ y þ v are applied to J0 such that r2 ¼ u2 þ v2 and
dx0 dy0 ¼ du dv then the x and y integrals are independent of u and v and are easily performed
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giving the following result

J0 ¼
Z b

0

Z a

0

ða � uÞ cos a0k0u þ
1

a0k0
sin a0k0u

� �


 ðb � vÞ cos b0k0v þ
1

b0k0
sin b0k0v

� �
sin k0r

r
du dv; ð16Þ

where a0 ¼ kx=k0 and b0 ¼ ky=k0 are dimensionless wavenumbers, introduced for convenience.
By inspection the terms in the curly brackets can be rewritten as

a cos a0k0u �
a0

k0

@

@a0
sin a0k0u

a0

� �
and b cos b0k0v �

b0

k0

@

@b0
sin b0k0v

b0

� �
; ð17Þ

so J0 can be expressed as

J0 ¼ abJ1 þ
a0b0

k20

@2

@a0 @b0
J2

a0b0

� �
�

a0b
k0

@

@a0
J3

a0

� �
�

b0a
k0

@

@b0
J4

b0

� �
; ð18Þ

where

J1 ¼
Z b

0

Z a

0

cos a0k0u cos b
0k0v

sin k0r

r
du dv: ð19Þ

Similarly

J2 ¼
Z b

0

Z a

0

sin a0k0u sin b
0k0v

sin k0r

r
du dv;

J3 ¼
Z b

0

Z a

0

sin a0k0u cos b
0k0v

sin k0r

r
du dv

and

J4 ¼
Z b

0

Z a

0

cos a0k0u sin b
0k0v

sin k0r

r
du dv: ð20Þ

Rewriting u and v in polar co-ordinates; u ¼ r cos y and v ¼ r sin y; gives J1 as

4J1 ¼
Z Z

½sin k0rcðyÞ þ sin k0rcð�yÞ þ sin k0rcðp� yÞ þ sin k0rcðpþ yÞ� dr dy; ð21Þ

where cðyÞ ¼ 1� a0cos y� b0sin y:
The limits of integration in Eq. (21) must be expressed for r and y thusZ b

0

Z a

0

1

r
du dv ¼

Z y0

0

Z a sec y

0

þ
Z p=2

y0

Z b cosec y

0

( )
dr dy; where y0 ¼ tan�1

b

a
: ð22Þ

The r integration is elementary and the translation of cð�yÞ; cðp� yÞ and cðpþ yÞ onto cðyÞ gives
integrals in terms of y in the different ranges C1;C2;y;C8 as shown in Fig. 1.
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A similar approach can be used for J2; J3 and J4: Considering the interval C1; the appropriate
integrand, G0

1; is found from

2pG0
1 ¼ c�1 �

1� cosðk0ac sec yÞ
k20aba0b0

f2c�3a0b0sin y cos y� c�2ða0cos yþ b0sin yÞ þ c�1g

þ
sinðk0ac sec yÞ

k0aba0
faa0c�2 sin y� ba0c�2 cos yþ bc�1 � ac�1 tan yg: ð23Þ

It is also found that the integrand in the interval C5 is the same as Eq. (23) i.e., G0
5 ¼ G0

1: Similar
forms follow for G0

2 ¼ G0
6; G0

3 ¼ G0
7 and G0

4 ¼ G0
8:

2.3. Radiation into a porous medium

Adopting the same approach for sound radiation into the porous medium is complicated by the
term e�kkr in the integrals of Eq. (13). However, since this is independent of a and b; where
a ¼ kx=k and b ¼ ky=k; the method is the same up to Eq. (21) with complications only apparent
when performing the r integration. The following results may be utilized:Z r0

0

e�kkr sin krc dr ¼
1

kðk2 þ c2Þ
fc� e�kkr0 ½k sin kr0cþ c cos kr0c�g; ð24Þ

and Z r0

0

e�kkr cos krc dr ¼
1

kðk2 þ c2Þ
fkþ e�kkr0 ½c sin kr0c� k cos kr0c�g: ð25Þ

To avoid confusion, consideration is given to the first integral in expression (13) with an
equivalent result following for the second integral. Considering the integrand in the interval C1;
the result equivalent to G0

1 from Leppington et al. [2] is

4kG1 ¼ H11 þ e�kka sec y½sinðkac sec yÞH12 þ cosðkacsec yÞH13�; ð26Þ
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where

H11 ¼
c

k2 þ c2

�
1

k2abab
2abc sin y cos y

ðk2 þ c2Þ2
4c2

k2 þ c2
� 3

� 	
þ

ða cos yþ b sin yÞ
k2 þ c2

1�
2c2

k2 þ c2

� 	
þ

c

k2 þ c2

� �

�
k

kabab
2abc

ðk2 þ c2Þ2
ða sin yþ b cos yÞ �

ðaaþ bbÞ
k2 þ c2

� �
; ð27Þ

H12 ¼
1

kaba
a

k2 þ c2
ða sin y� b cos yÞ

2c2

k2 þ c2
� 1

� 	
þ

c

k2 þ c2
ðb � a tan yÞ

� �

�
k

k2abab
�1

k2 þ c2
þ

2c

ðk2 þ c2Þ2
ða cos yþ b sin yÞ þ

2ab sin y cos y

ðk2 þ c2Þ2
1�

4c2

k2 þ c2

� 	� �
ð28Þ

and

H13 ¼
1

k2abab
c

k2 þ c2
þ
2abc sin y cos y

ðk2 þ c2Þ2
4c2

k2 þ c2
� 3

� 	
þ

ða cos yþ b sin yÞ
k2 þ c2

1�
2c2

k2 þ c2

� 	� �

�
k

kaba
2ac

ðk2 þ c2Þ2
ða sin y� b cos yÞ þ

1

k2 þ c2
ðb � a tan yÞ

� �
: ð29Þ

Note that by setting k ¼ 0; the above set of equations reduces to

4kG1 ¼ H11 þ sinðkac sec yÞH12 þ cosðkac sec yÞH13; ð30Þ

where

H11 ¼ c�1 �
1

k2abab
f2c�3ab sin y cos y� c�2ða cos yþ b sin yÞ þ c�1g; ð31Þ

H12 ¼
1

kaba
faac�2sin y� bac�2 cos yþ bc�1 � ac�1 tan yg ð32Þ

and

H13 ¼
1

k2abab
f2c�3ab sin y cos y� c�2ða cos yþ b sin yÞ þ c�1g; ð33Þ

which are the same as Leppington et al. [2] (Eq. (23)) since k ¼ k0:
In the interval C5 it is discovered that G5 can be found by substituting �k for k in G1: Similar

expressions are also found in the other regions.
Terms like c�1 appearing in the problem considered by Leppington et al. [2] appear here as

cðk2 þ c2Þ�1: Since much of their analysis considered regions where c�1-N; the same approach
is not necessary here because cðk2 þ c2Þ�1 is always finite for k > 0: In fact, k-1 from below as
f-0 and k-0 from above as f-N (see Refs. [5,6]) but in the above coincidence solution of
Leppington et al. [2], cðyÞ has no zeros. In the following it transpires that this is unimportant
because coincidence is not a consideration for finding a leading order solution.
It is now important to investigate the behaviour of the exponential appearing in Eq. (26) and

the equivalent terms for G2;y;G8: Now k > 0 so letting N ¼ kka and M ¼ kkb such that M and
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N are both positive, the terms appear as e�N sec y in C1 and C8; eN sec y in C4 and C5; e�M cosec y in
C2 and C3 and e

M cosec y in C6 and C7: However, sec y > 1 in C1 and C8 and sec yo� 1 in C4 and
C5: Thus, it always occurs in the form e�N 0

where N 0 > 0: A similar argument in the other regions
gives rise to the form e�M 0

where M 0 > 0:
To simplify the problem, the asymptotic limit as kk #a-N (where #a is the lesser of a and b) is

considered. Since ko1; then k #a > kk #a so k #a-N also. This implies that the acoustic wavelengths
in the system are much smaller than the plate dimensions.
Therefore, in the limit as kk #a-N; N 0-N and M 0-N and e�N 0

-0 and e�M 0
-0; so in each

of the intervals Ci

4kGiBHi1; ð34Þ

to leading order where i ¼ 1; 2;y; 8: Furthermore,

Hi1 ¼
c

k2 þ c2
þ O

1

k #a

� �
; ð35Þ

so

4kGiB
c

k2 þ c2
: ð36Þ

This, along with the corresponding term for the second integral in Eq. (13), gives

sB
rc

r0c0

1

2p

Z 2p

0

cþ tk
k2 þ c2

� �
dy: ð37Þ

This integral can be evaluated to give

sB
rc

r0c0

1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2ðl2 þ 4k2Þ

q f½ðl2 þ 4k2Þ1=2 þ l�1=2 þ t½ðl2 þ 4k2Þ1=2 � l�1=2g; ð38Þ

where l ¼ 1� k2 � m2 and m2 ¼ a2 þ b2 ¼ ðkp=kÞ2:
This is the leading order solution, which is area dependent and applies over the whole frequency

spectrum (assuming f is large enough to allow kk #ab1). Therefore the plate behaves as if it is
infinite and the edge terms (which dominate below coincidence for radiation into air) can be
neglected. The following section considers the simpler problem of radiation from an infinite plate
and shows that the same result, Eq. (38), is obtained.

3. Radiation from an infinite plate

3.1. Radiation from an infinite plate into air

Leppington et al. [2] showed that sound radiation into air depends crucially on the relative
magnitudes of the acoustic wavenumber, k0; and the plate wavenumber kp ¼ ðk2x þ k2yÞ

1=2:
Coincidence occurs when the trace acoustic wavenumber equals the plate wavenumber and the
critical coincidence frequency occurs at the lowest frequency at which they are equal. The effect on
radiation can be illustrated by considering an infinite plate excited in such a way as to vibrate with
transverse velocity Uðx; yÞ ¼ U0 sin kxx sin kyy expðiotÞ: The motion of the air can be described by
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a velocity potential f0 which satisfies the wave equation:

=2f0 ¼
1

c20

@2f0
@t2

ð39Þ

(where c0 ¼ o=k0 is the wavespeed in air) and the boundary condition

@f0
@z

¼ Uðx; yÞ on z ¼ 0: ð40Þ

The solution is

f0 ¼
U0

ig0
sin kxx sin kyy exp ið�g0z þ otÞ; ð41Þ

where g20 ¼ k20 � k2x � k2y i.e., g0 ¼ 0 at the critical coincidence frequency. If k0 > ðk2x þ k2yÞ
1=2 then

g0 is real and this is known as ‘above’ coincidence. Conversely, if k0oðk2x þ k2yÞ
1=2; then g0 is

imaginary and this is referred to as ‘below’ coincidence. It is useful to define g0 thus,

g0 ¼ ðk20 � k2x � k2yÞ
1=2 for k0 > ðk2x þ k2yÞ

1=2 ð42Þ

and

g0 ¼ �iðk2x þ k2y � k20Þ
1=2 ¼ �ig00; say; for k0oðk2x þ k2yÞ

1=2;

where g00 is real.
The waves are described by the real part of f0: Above coincidence

Reff0g ¼ �
U0

g0
sin kxx sin kyy sinðg0z � otÞ; ð43Þ

which represents a radiating sound field away from the plate. Below coincidence

Reff0g ¼
U0

g00
sin kxx sin kyy e�g0

0
z cosot; ð44Þ

which represents exponentially decaying surface waves as z-N:
These two results are reflected in the radiation efficiency s0 defined by

s0 ¼
W0

r0c0/U2S
¼

W0

1
8
r0c0U

2
0

; ð45Þ

where W0 ¼ � 1
2
U2
0r0o Imf

R R
f0ðx; y; 0Þf

�
0zðx; y; 0Þ dx dyg is the time-averaged power. The

integration is performed to give power per unit area of plate. The term f0f
�
0z is imaginary

above coincidence (due to g0 being real) giving a radiation efficiency

s0 ¼ k0=g0: ð46Þ

Below coincidence f0f
�
0z is purely real so

s0 ¼ 0; ð47Þ

and no power is radiated.
The physical explanation for this is described by the cancelling phenomenon known as

hydrodynamic short circuiting. Below coincidence sound in air travels faster than the bending
waves on the plate and therefore disturbances in the air caused by plate vibrations result in the air
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moving sideways thus cancelling the pressure differences and resulting in no net radiation away
from the plate.
In finite sized plates there is no cancellation of the acoustic pressure around the edges and so

radiation can occur below coincidence, the strength of which is proportional to the perimeter
length of the plate. The approximate equation given by Leppington et al. [2] for radiation in this
case is then

s ¼
P

Lc0

4p2f 1=2f 1=2c Sðm2 � 1Þ1=2
ln

mþ 1

m� 1

� �
þ

2m
m2 � 1

� 	
; ð48Þ

where
P

L is the perimeter length, S is the surface area, fc is the critical coincidence frequency and
m ¼ ðfc=f Þ1=2:

3.2. Radiation from an infinite plate into a porous medium

For the same infinite plate radiating into a porous medium with acoustic wave number ka; the
fluid motion within the porous medium is given by

fa ¼
U0

iga

sin kxx sin kyy exp ið�gaz þ otÞ: ð49Þ

Here ga ¼ ðk2a � k2x � k2yÞ
1=2 but ka can be expressed as kð1� ikÞ as before. Thus ga can be written

as

ga ¼ g1=2ðcos 1
2
jþ i sin 1

2
jÞ ð50Þ

where g ¼ f½k2ð1� k2Þ � k2x � k2y�
2 þ 4k4k2g1=2 and j ¼ tan�1 �2k2k

k2ð1�k2Þ�k2x�k2y

n o
; �pojop: In fact,

since ga is required to be single-valued, j must be chosen such that �pojo0: Substitution for kx

and ky in terms of their non-dimensional counterparts a and b gives g ¼ k2ðl2 þ 4k2Þ1=2 and
j ¼ tan�1ð�2k=lÞ:
It was shown for air that s0 ¼ 0 when g0 is purely imaginary. In the porous medium ga is only

purely imaginary when j ¼ 7ð2n þ 1Þp; all of which are outside the range of definition. So it is
anticipated that the whole area of the plate will radiate sound both above and below coincidence.
The waveforms in the fluid are given by

Reffag ¼
1

g1=2
sin kxx sin kyy expð�g1=2 sin 1

2
jzÞ sinðg1=2 cos 1

2
jz � 1

2
j� otÞ: ð51Þ

This expression contains both the radiating sine term associated with Eq. (43) and a decaying
exponential as in Eq. (44). There is therefore a radiating sound field, which decays with distance
due to the dissipative nature of the medium.
The radiation efficiency is given by

sa ¼
Wa

1
8
r0c0U

2
0

; ð52Þ

where

Wa ¼ � 1
2

U2
0o Imfra

Z Z
faðx; y; 0; tÞf

�
azðx; y; 0; tÞ dx dyg: ð53Þ
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The solution is

sa ¼
rk0

r0g1=2
ðcos 12j� t sin 1

2jÞ ð54Þ

which can also be expressed as

sa ¼
rc

r0c0

1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2ðl2 þ 4k2Þ

q f½ðl2 þ 4k2Þ1=2 þ l�1=2 þ t½ðl2 þ 4k2Þ1=2 � l�1=2g: ð55Þ

The right-hand side of this expression is identical to that of Eq. (38) and so it is apparent that

sBsa: ð56Þ

Therefore the leading order approximation for radiation efficiency of a finite plate radiating into a
porous medium is the same as the radiation efficiency of an infinite plate.
At high frequencies, for materials with tortuosity and porosity close to 1, the values of t and k

will tend to zero and rc will tend to r0c0: Therefore, where f > fc; Eq. (55) simplifies to s ¼
1=

ffiffiffi
l

p
¼ ð1� fc=f Þ�1=2; which is the standard equation for radiation into air above the critical

frequency.

4. Experimental results

In order to test the theory that was developed in the previous sections, measurements were
made on two thin plates radiating into a porous layer of finite thickness. As it is difficult to make a
direct measurement of the sound field generated in the porous layer, partly due to the difficulties
of placing a microphone in the porous layer and partly because the acoustic energy radiated is
converted into heat within a short distance from the plate, the approach adopted was to measure
the damping loss of the plate. The plate was excited with a blow from a small hammer and the
reverberation time, T ; was measured using an accelerometer (at 6 positions) from which the
damping loss factor, Z; was found using the equation

Z ¼
2:2

fT
: ð57Þ

The predicted damping loss factor due to radiation was found from the equation

Z ¼
r0c0sa

ors

; ð58Þ

where rs is the plate surface density. (Note that r0c0 is used as sa was normalised by r0c0 in
Eq. (52).)
To calculate the properties of the equivalent fluid the Allard and Champoux [5] expressions

were used. For fibrous materials, they give ra and ca as

ra ¼ 1:2þ
�0:0364

ðr0 f =RÞ2
�
i0:1144

ðr0 f =RÞ

 !1=2

ð59Þ
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and

ca ¼
101320

ra



i29:64þ ð2:82=ðr0 f =RÞ2 þ i24:9=ðr0 f =RÞÞ1=2

i21:17þ ð2:82=ðr0 f =RÞ2 þ i24:9=ðr0 f =RÞÞ1=2

 !1=2

; ð60Þ

where R is the air flow resistivity Rayls/m. These expressions can then be used to give t ¼
�ImðraÞ=ReðraÞ and k ¼ �ImðkaÞ=ReðkaÞ: The value of m is found from

m2 ¼
k2p

k2
¼

4p2ffc

c20ðReðkaÞÞ
2
: ð61Þ

These values can then be inserted into Eq. (38) to give the radiation efficiency. Equivalent fluid
properties may also be found using the expressions given in Refs. [6–9].
The predicted loss factor was determined by summing the measured damping of a freely

suspended plate, taken to be the internal loss factor, and the predicted radiation into a porous
layer.
The tests were made on thin aluminium plates radiating into a 200 and a 50 mm thick semi-rigid

rockwool slab with a flow resistivity of 40,000 Rayls/m. Measurements were made with the plate
resting directly on the layer and also when supported on 5 mm spacers. The porous layer rested on
a concrete floor. The thickness of the gap could not be set accurately as the spacers tended to sink
into the porous layer and because of bending of the plate (due to self-weight) and probably varied
from 1–5 mm: The presence of the air gap will tend to reduce the radiation from the plate and so
reduce the measured damping [1]. However, fibrous wisps of porous material were still lightly in
contact with the plate and this will increase the measured damping so the two effects will tend to
cancel out.
The two sets of measurements allow the effect of damping, caused by contact between the plate

and the porous layer, to be estimated as there will be no structural damping if there is an air gap.
The first test was performed on a 0:95
 0:85 m
 1:5 mm aluminium plate and the results are

shown in Fig. 2. The second test was performed on a 0:7
 0:5 m
 0:67 mm aluminium plate
radiating into the same porous layer and the results can be seen in Fig. 3.
In each case the dotted line shows the damping of the plate when suspended by thin strings and

gives damping much less than when the plate is close to or touching the porous layer. Placing the
plate over the layer but not quite touching it increases the damping and the measured data agree
well with the predicted curve. There is little difference between the results for a 200 and 50 mm
layer suggesting that for this porous material the theory (which is based on an infinitely thick
layer) works well even when the layer is far from infinite in thickness. This might be expected for
the thicker layer as the attenuation through the layer and back from the concrete would be at least
10 dB from 27 Hz but for the 50 mm layer the attenuation is only 10 dB from 450 Hz: In Fig. 2
the radiation into the thin layer gives a slightly higher damping whereas in Fig. 3 the damping is a
little lower. Given the difficulties in setting the spacing and in the experimental uncertainties, this
difference cannot be taken as significant. At low frequencies the measured results are less than
predicted. This may be because the requirement that the plate be large compared to a wavelength
(kk #a is large) is not satisfied though kk #a is already 12 at 200 Hz: Alternatively it may be due to the
air gap which allows waves to travel laterally when the impedance of the layer is high (as at low
frequencies).
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When the plate is resting on the porous layer then the damping of the thicker plate (Fig. 2)
increases by about 3 dB and the thinner plate (Fig. 3) increases by about 5 dB: This increase will
be in part due to the increased radiation but is probably due mainly to the structural damping. An
increase of 3 dB would mean that the radiation damping and structural damping were equal.

5. Discussion

The use of an equivalent fluid representation of the porous material gives an equation for sound
radiation from a finite plate that is tractable using analytical techniques. The resulting solution
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Fig. 3. Measured and predicted damping loss factor of a 0:67 mm aluminium plate when radiating into a porous layer.

——, measured when resting on the porous layer; ——, measured when placed above the porous layer; : : : : : :;
measured damping of a freely suspended plate; - - - - -, predicted damping when radiating into a porous layer; J;
200 mm porous layer; &; 50 mm porous layer.

Fig. 2. Measured and predicted damping loss factor of a 1:5 mm thick aluminium plate when radiating into a porous

layer. ——, measured when resting on the porous layer; ——, measured when placed above the porous layer; : : : : : ;
measured damping of a freely suspended plate; - - - - -, predicted damping when radiating into a porous layer; J;
200 mm porous layer; &; 50 mm porous layer.
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provides a relatively simple method for predicting radiation at high frequency, where the plate
exhibits multimodal behaviour. There are, however, a number of assumptions in the theory that
limit its application.
The first is related to the adoption of an equivalent fluid representation of the porous material

where contact between the fluid and the plate is implicit but where it is assumed that no contact
occurs between the skeleton and the plate. This does not therefore account for the viscoelastic
behaviour of the structural phase of the porous medium, which if in contact with the plate will
support longitudinal and shear waves. As a result, the damping for a real system, where there is
physical contact, might reasonably be expected to be higher than predicted by the theory
presented in this paper as was observed in the experimental data. The degree to which this
additional radiation mechanism affects the behaviour of a plate is, however, dependent on the
viscoelastic properties of the structural phase of the porous medium. For very limp materials, such
as glass wool, evidence suggests that the influence of the structural phase is secondary to that of
the fluid phase [10]. It is therefore likely that the expression for radiation should be reliable even if
used for systems where there is contact between the plate and the porous medium. It might
reasonably be expected that where the porous material is not bonded directly to the plate and
where there is not continuous contact between the two that the effect of the structure would be
reduced further. In many practical applications, contact may be incomplete or there may be the
deliberate introduction of a small air gap. The presence of an air gap will influence radiation but
previous work has indicated that reasonably accurate predictions of radiation can be obtained for
systems where the gap is narrow [1]. Care has to be exercised for systems where the porous layer
has a high flow resistivity as this can result in the acoustic disturbance travelling laterally along the
air space in preference to penetrating the porous medium.
There have also been numerical studies carried out using the Biot representation [10] of the

porous medium which accounts for both the fluid and the structural phases. It is probable,
however, that these will still be subject to limitations when the nature of the interface between the
plate and the porous medium is indeterminate. If a more detailed solution for radiation into a
porous medium is required then a more complete model of the porous layer could be used. This
would not be practical with the full solution for radiation from a finite plate but as the leading
order terms can be found from consideration of an infinite plate then this simpler model could be
used as a basis for further calculations of radiation in this case.
Predictions at low frequency are affected both by the assumption of multi modal behaviour and

by the assumption that kk #ab1 in performing the asymptotic solution. The number of modes
present in the plate may be predicted accurately from a knowledge of the plate material and its
physical properties. Similarly, kk #a may readily be evaluated from the plate properties and an
equivalent fluid representation of the porous material. An example of the probable effect that this
may have on the prediction may be seen in Fig. 3 in a related paper where the theory is compared
with numerical solutions of Eq. (13) [11]. At low frequencies the evaluation of the leading order
term in the current theory yields a solution equivalent to the infinite plate solution and so omits
edge and corner effects resulting from incomplete phase cancellation at the boundaries of a finite
plate. The evaluation of the higher order terms in Eqs. (31)–(33) (as well as the equivalent terms
for the second integral in Eq. (13)) would yield expressions for these effects.
The final restriction relates to the treatment of the porous medium as being of semi infinite

extent, which implies that there will be no reflected field incident on the plate. In practice, for
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layers of finite thickness, this will not be the case and reflections occurring at the boundaries of the
porous layer will give rise to a reflected wavefield incident on the plate. Most porous materials
offer very high attenuation with distance and as a result, for all but very thin layers, the magnitude
of any reflected field is likely to be insignificant. A rough estimate of the strength of the returning
field could be made using the equivalent fluid representation of the propagation coefficient and an
assumed value for the reflection coefficient for the free face of the porous layer.
When an infinite plate is radiating into air below the critical frequency, there are no waves

radiating away from the plate and the air molecules move in an elliptical path with an amplitude
that decreases with distance. As the medium is not dissipative there is no energy lost from the
plate. When an infinite plate is radiating into a porous medium, there are both travelling plane
waves and the elliptical motion associated with nearfield waves. As the medium is itself dissipative
there is energy lost as the molecules move in elliptical paths in addition to the energy lost as
travelling waves (which are themselves attenuated with distance) resulting both in higher values
for radiation and expressions for radiation which are dependant on the area of the plate.
The general trend in the radiation efficiency curves can be seen in Figs. 4 and 5. Fig. 4 shows

how the radiation efficiency of a plate with a critical frequency of 16;000 Hz (when radiating into
air) varies as the air flow resistivity of the porous layer varies from 100 to 100;000 Rayls=m: It can
be seen that as the air flow resistivity tends to zero, the peak in the radiation efficiency at the
critical frequency becomes sharper and below the critical frequency, the radiation efficiency tends
to zero. In such cases the radiation efficiency of a real plate will be dominated by edge effects
which are not included in this figure. However, a practical solution would be to add the radiation
due to edge effects for radiation into air (Eq. (48)) to the radiation into the porous layer over the
surface to give an estimate of the total radiation.
Fig. 5 shows how the radiation efficiency of a plate radiating into a porous medium with an air

flow resistivity of 10;000 Rayls=m changes as the critical frequency varies from 100 to 20;000 Hz:
The critical frequency is indicated by a small vertical tick in the curve. It can be seen that when the
critical frequency is low the peak is smoothed out and the radiation efficiency is relatively
insensitive to the actual value of fc:
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Fig. 4. Radiation efficiency of a plate radiating into a porous medium with air flow resistivity of 100–100;000 Rayls=m:
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6. Conclusions

The results of this work have shown that when a plate radiates into a porous layer, the radiation
will be much higher than for radiation into air. Radiation takes place over the entire plate. A
knowledge of this allows a simpler infinite plate theory to be used to calculate the radiation
efficiency. The ability to use the infinite plate theory to calculate radiation will allow other more
complex problems to be solved such as radiation into layers of finite thickness, radiation into
multiple layers (including air gaps) and radiation into porous layers whose structure is such that
they cannot be modelled as equivalent fluids.
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